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g = wcj”(z, 5) Null momenta parametrized by a point on the celestial sphere/plane

Interpret soft factor Sk (2, Z) as generating infinitesimal symmetry transformation on hard states

Sk(2,2)|pk) ~ 0(2,2)|pk)

These generalized symmetries also involve the insertion of soft gravitons
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Tree-level, minimal coupling

The graviton W1~ algebra and symmetry action on hard massless particles were derived in celestial holography

* Used basis of conformal primary operators that transform in highest-weight representations of SL(2, (C) global
conformal (Lorentz) transformations

This talk: derivation of W1~ symmetry action from momentum-space soft theorems
for massless and massive hard particles, guided by conformal covariance
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Soft factors that generate the symmetry action on hard particles
should also transform covariantly with this weight
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Parametrize scattering data to facilitate analysis of global conformal transformations

Massive Particles
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Natural proposal: complete them to angular momentum generators
pr - ]
L0 1 L0 a)_ 1 by =reiq

q — <(€+ pr) ¢ — (G- pr) eimm ) = FLy, . 0 9
apg €+ Pk 6]9';; +ap/;€b €4 Dk " s 'Ck/,w = =1 (pk,ua—pl/ _pk:ya—p,u>
k k

Resulting modified soft factors transform covariantly with identical weight to soft gravitons:

(+1 . :
S/(g) (Z 2) B 8_|_/Wp’l]:pz 1 F+ . Ek 1812.06895 Guevara, Ochirov, Vines
k ) T A (€ n 1)' e, . 1405.1410 He, Huang, Wen
9" Pk -\ &+ Pk 1504.01364 Lipstein

S (2,2) = (cz+d) ez +d) 7289 (2, 2)

Note: divisionby € - P impliesthisis not gauge invariant, and the dependence on the reference point means the
"universal” partitionis not strictly conformally invariant.

However, the gauge and conformal non-invariance will drop out at the level of symmetry action.
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To construct symmetry action, consider a primary descendant of the modified massless soft factor:
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To construct symmetry action, consider a primary descendant of the modified massless soft factor:

0535 (2,2) = (cz + d) ez + d) 035 (2, 2)

It transforms with weight (_6;2, 654) and does not depend on Zg: fully covariant and invariantly partitioned

Define the right-weight of the primary descendantasp = h = =5

Primaries of weight p have a finite set of modes closed under SL(2,R): 1—-p<m<p-—1



W1i+o00 Action on Massless Particles

To construct symmetry action, consider a primary descendant of the modified massless soft factor:

a§+3Sl/€(€)(z7 ) (CZ—|—d) +2<——+d)£+4a€+3s( )( Z)

It transforms with weight (_6;2, 654) and does not depend on Zg: fully covariant and invariantly partitioned

Define the right-weight of the primary descendantasp = h = =5

Primaries of weight p have a finite set of modes closed under SL(2,R): 1—-p<m<p-—1

Consider the action of

4z m— _
O |pr) = -3 / o T lpZ=1g =Y, 2 py)




W1i+o00 Action on Massless Particles

To construct symmetry action, consider a primary descendant of the modified massless soft factor:

3§+3S,/€(€)(Z, ) (CZ—|—d) +2<——+d)£—|—48€+3s( )( Z)

It transforms with weight (_6;2, 654) and does not depend on Zg: fully covariant and invariantly partitioned

Define the right-weight of the primary descendantasp = h = =5

Primaries of weight p have a finite set of modes closed under SL(2,R): 1—-p<m<p-—1

Consider the action of 7,
1 A2p—1 /(2p—4 _
\pk> = —5/% Zrme o . Sk( - )(2a2)|p1€>
Examples:
3

P=3 — ¢ = —1 leading soft theorem, closed set of 2 modes: (chiral) translations



W1i+o00 Action on Massless Particles

To construct symmetry action, consider a primary descendant of the modified massless soft factor:

a§+3S]/€(€)(z7 ) (CZ—|—d> +2<——+d)£—|—48€+3s( )( Z)

It transforms with weight (_6;2, 654) and does not depend on Zg: fully covariant and invariantly partitioned

Define the right-weight of the primary descendantasp = h = =5

Primaries of weight p have a finite set of modes closed under SL(2,R): 1—-p<m<p-—1

Consider the action of 7, .
+m—1q2p—1 o/(2p—4 _
O |Dk) = —5/% 2o S - )(Za2)|pk>
Examples:
p= g — ¢ = —1 leading soft theorem, closed set of 2 modes: (chiral) translations

p = 2 — ¢ = O subleadingsoft theorem, closed set of 3 modes: SL(2, R) chiral half of Lorentz



W1i+o00 Action on Massless Particles

To construct symmetry action, consider a primary descendant of the modified massless soft factor:

3§+3S,/€(€)(Z, ) (CZ—|—d) +2<——+d)£—|—48€+3s( )( Z)

It transforms with weight (_6;2, 654) and does not depend on Zg: fully covariant and invariantly partitioned

Define the right-weight of the primary descendantasp = h = =5

Primaries of weight p have a finite set of modes closed under SL(2,R): 1—-p<m<p-—1

Consider the action of 7,
+m—1q2p—1 o/(2p—4 _
Ol Pr) ——5/% 2o Sk(p )(2a2)|p1€>
Examples:
p= g — ¢ = —1 leading soft theorem, closed set of 2 modes: (chiral) translations

p = 2 = { = O subleadingsoft theorem, closed set of 3 modes: SL(2, R) chiral half of Lorentz

Can prove that this action satisfies thew 4 oo algebra | [62,,69] = [m(q — 1) — n(p — 1)] 62122

m-+n
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Covariant Massive Soft Factors

The prescription for massless particles (taking modes of a primary descendant of the soft factor)
can be generalized, provided that the relevant primary descendant is partitioned invariantly

For / = —1,0, 1, the primary descendant is independent of z; and takes the simple form
4
8§+3SI/€(£) (2,2) = Ny Di (F_ - Lk)Hl Ny = (=V2) 7 e+ 3) (¢ + 2)

(G- pr)t?



Covariant Massive Soft Factors

The prescription for massless particles (taking modes of a primary descendant of the soft factor)
can be generalized, provided that the relevant primary descendant is partitioned invariantly

For / = —1,0, 1, the primary descendant is independent of z; and takes the simple form
4
+3a') ., =\ _ Dy, . (+1 o ael
0;7°S, (Z,Z)—Ng(qA.pk)E_M (F_ - Ly) Ny = (—V2) e+ 3)(¢ +2)

However, for £ > 1, its primary descendant depends on z, so to find the correct symmetry action, we
need to revisit the soft factor itself



Covariant Massive Soft Factors

The prescription for massless particles (taking modes of a primary descendant of the soft factor)
can be generalized, provided that the relevant primary descendant is partitioned invariantly

For / = —1,0, 1, the primary descendant is independent of z; and takes the simple form
4
+3a') ., =\ _ Dy, . (+1 o ael
0;7°S, (Z,Z)—Ng(qA.pk)E_M (F_ - Ly) Ny = (—V2) e+ 3)(¢ +2)

However, for £ > 1, its primary descendant depends on z, so to find the correct symmetry action, we
need to revisit the soft factor itself

e Py 1 F. L.\
Recall S,;(ﬁ) (z,2) = £ Prl < + k)
Gg-pr L+ \ e -pi




Covariant Massive Soft Factors

The prescription for massless particles (taking modes of a primary descendant of the soft factor)
can be generalized, provided that the relevant primary descendant is partitioned invariantly

For / = —1,0, 1, the primary descendant is independent of z; and takes the simple form
4
+3a/(8) /. =\ Dy, . 0+1 B -1
0;7°S,. ' (2,2) = Ny @ o) (F_ - Ly) Ny = (—V2) e+ 3)(¢ +2)

However, for £ > 1, its primary descendant depends on z, so to find the correct symmetry action, we
need to revisit the soft factor itself

y 041
S;:;(E) (2,2) = E4wDypPy 1 <F+ ‘ /Jk:)

Recall —
Gg-pr L+ \ e -pi

Soft factor Sy (2. 2) can be split into two separately covariant pieces, one of which is independent of z

N, 1 g |(Fy L)
S/(ﬁ) (Z,Z) _ 14 f2€—|—2 ag 1 + k f — q\ - Do
k @i+2) FaE L
N, 1 <= [t—2\ (-1 . - HFy - L) .
3 ¢ S (—1) 2 gl gl f(Ey - Ly) o
(g_|_3)!(g_2)!pz£—2 g i Ji+l+4 0 z £+4+j do = (20, 2)




Covariant Massive Soft Factors

The prescription for massless particles (taking modes of a primary descendant of the soft factor)
can be generalized, provided that the relevant primary descendant is partitioned invariantly

For / = —1,0, 1, the primary descendant is independent of z; and takes the simple form
4
+3a/(8) /. =\ Dy, . 0+1 B -1
0;7°S,. ' (2,2) = Ny @ o) (F_ - Ly) Ny = (—V2) e+ 3)(¢ +2)

However, for £ > 1, its primary descendant depends on z, so to find the correct symmetry action, we
need to revisit the soft factor itself

y 041
S;:;(E) (2,2) = E4wDypPy 1 <F+ ‘ £k>

Recall ~
Gg-pr L+ \ e -pi

Soft factor Sy (2. 2) can be split into two separately covariant pieces, one of which is independent of z

"0 B N (F [ )E—}—l
Sk( )(Z’Z) _ (254_62)!]‘2“2 +f£+l:1

1

20—2
Dy

{—2 ]
B Ny 1 Z (E — 2) ﬂfﬁ—Z—j]ge—l—éLA—ja{—l
(£ 4 3)!(£ —2)! 22 =\ J Jiti+4 0 g

/-1
0;

Cautionin massless limit f=4q-pg,

L)

0+4+j
0




W1400 Action on Massive Particles

10



W1400 Action on Massive Particles

Natural proposal for the "universal" soft factor for massive external particles at order ¢ > 1

Ny (G- pp) 2 Ny=(—V2)" " (e +3) (¢ +2)

(2¢+2)!  p2t2

500z, 2) = -

(F, - cwf“]
(q - Pk)£+4
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W1400 Action on Massive Particles

Natural proposal for the "universal" soft factor for massive external particles at order ¢ > 1

: Ny = (=V2) e+ 3) (¢ +2
S(E)(Z 2) - jvE (q 'pk:)%_'_z 8@—1 (F+ . ﬁk)“—l] 14 ( ) ( )( )
k ’ — — z " )
B2 @2)™" | 502 o (2 +d) 2z + D250 (2, 2)




W1400 Action on Massive Particles

Natural proposal for the "universal" soft factor for massive external particles at order ¢ > 1

" 20+2 0+1 Ny = (_\/5>e_1(£ +3)(¢ +2)
: F .
S,Ef)(z, 7) = Ne ' (4 Z;E,L g1 ( + £k2+4 ]
(26+2)t pp (4 pr)
Primary descendant generalizes the form already found for £ = —1,0, 1

4
a§+SSI(€€)(Z’ Z) _ M(Cj 5k)€+4 (F_ . Ek)f—i—l
"M
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W1400 Action on Massive Particles

Natural proposal for the "universal" soft factor for massive external particles at order ¢ > 1

" 20+2 0+1 Ny = (_\/5>e_1(£ +3)(¢ +2)
: F .
S,Ef)(z, 7) = Ne ' (4 Z;E,L g1 ( + £k2+4 ]
(26+2)t pp (4 pr)
Primary descendant generalizes the form already found for £ = —1,0, 1

4
38 (2,2) = N2y (- L)

(G-p)™ 050 (2,2) = (e +d) 7 2(ez + )OS0 (2, 2)




W1400 Action on Massive Particles

Natural proposal for the "universal" soft factor for massive external particles at order ¢ > 1

N, = (=V2) e+ 3) (¢ +2)

727

DN Ut

% 20+2 /41
§0G ) = Mo @) e | (P L) ]
k \= %) = — Z 5 ;
(26+2)8 p? (G- )™
Primary descendant generalizes the form already found for £ = —1,0, 1
1
B (2,8) = Ne——eg (- L)
(4 pr)
As in the massless case, define p = ho= &4 , Ll=p<m<p-1,and consider the action
2
2p—4 _
iy = L [ Ezgmrgn [ S e 0=
2J 2m 57 V=), >3

10



W1400 Action on Massive Particles

Natural proposal for the "universal" soft factor for massive external particles at order ¢ > 1

N, = (=V2) e+ 3) (¢ +2)

605z = N (@p)* e [ (B L)
FEIT Rl T [T
Primary descendant generalizes the form already found for £ = —1,0, 1
1
043 (£ _ Pk /41
05884 (2, 2) = Ny—E s (F_ - L)
(4 - pr)
As in the massless case, define p = ho= &4 , Ll=p<m<p-1,and consider the action
2

O |Pr) =

2 21

2
1 / d_zngrm—la?P—l

z

2
d < Zp—i_m_l

B _N2p4/
2

2T

272)’pk>7

S];(QP—AL)( D=
SV ) py),  p>

(G- pr)

2p

(F_ - L) pg)-

Dot DNIW

727

DO Ut

10



W1+o00 Action on Massive Particles
Natural proposal for the "universal" soft factor for massive external particles at order ¢ > 1

] Ny = (—vV2)" (e +3) (¢ +2)

(Fy - L)
(q- pk)€+4

R 20+2
Nz (q : pk)

(2¢+2)!  p2t2

S(E)( ) (95—_1

Primary descendant generalizes the form already found for £ = —1,0, 1

4
¢ _ p
L8 (2 2) = Ny (1 - L)

As in the massless case, define p = h = “74 , Ll=p<m<p-1,and consider the action

1(2p—4) _
Om|pr) = ——/d @ 2 sptm—152p-1 S (B k), p=13.2.3
k 2 Y Z S£2p—4)(z,2)‘pk>’ . %

Nop_y [d°z_ +m—1 Dy 2p—3
— S [ SR P (P £ )
(9 pr)

Can again prove that this action respects the W1 algebra: |[0h,,02] = [m(¢—1) — n(p — 1)] 55;‘1;2




Summary

Clarified origin of w14 o symmetry action from tower of momentum-space soft factors

Proposed new "universal" massive soft factors motivated by SL(2, C) covariance

Discovered nontrivial symmetry action on massive particles

Proved that symmetry action satisfies W1 oo acting on massive particles

Future Directions

* How is the symmetry algebra deformed by loopsand higher-dimension operators?
* What theories solve W1 o constraints?

* Organizationof "non-universal" terms in soft expansion from symmetry principles?
* Simplification of symmetry action in integer massive conformal primary basis?

* Kinematicalgebra description of symmetry action on massive particles?

11



More details
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Massless W14 o Action

1 2 _
O |pr) = — = / ¢z grrm=lglr _152(2]9 Y(z,2)|py)

2 2T p = h — g+74
Examples: l—p<m<p-—1
p= ; — ¢ = —1 leading soft theorem, closed set of 2 modes: (chiral) translations
57, o) = Ip) 5% 1pr) = 2% )

p=2— ¢ =0 subleadingsoft theorem, closed set of 3 modes: SL.(2, R) chiral half of Lorentz

1

Actingon scalars  2,|px) = Z" 1 (z,%@zk — %wk&”k) D)
L : : . > d
Action in the conformal primary basis follows directly: 650, (2, Z,) = / wi: kak 62 |pr) —wr 0, — Ak
0

Can prove by induction that this action satisfies the w4 o algebra . 52 59 — 5

+q—2 Base cases: p = .2, 5 5 1

002, 0p] = [m(q — 1) —n(p — )] 6,05 272 5360 sl



Massive W14 5 Action

2p—4
5 1py) = /d Z _pt+m— 1 2p—1 Sli:(p )(z,z)\pk>, p
Pr) = —5 z > -
S STV,
Nop—s [ d2 p+m—1 Pi 2p—3
= — ZPTMm I D

l-p<m<p-1

Leading: (chiral) translations

€Ly
4yp.

KT | )
4y/<:

3 3
5f%|29k> = Pk) 5; pK) =

Subleading: SL(2,R)Killing vectors on (Y, wy, Wi ) hyperboloid

1
S |DR) = 5 Uk ' <2wi8wk + (m + 1wy, — m(m + 1)?/1%3%) [pg)




Splitting the Soft Factor

To separate the soft factor and isolate the covariant piece independent of 2, use completeness:

Pk _ (0:0-p)0:0-pi) = (@) (0 i)
Pk Pi

For example, when ¢/ = 2

3 3
52(z5) =32 [é(@-mﬁaz (<F+ L)) ) — Lo )0 <(F+ L) )

Pk (G- pp)° Pk (do - Pi)
5 | Ny 1 6, [ (Fy-Ly)° P 3 :
03 W_Q(q - pg) 05 - = = Ny— = (F_ - Ly) Follows primary
" Pk (9 pr) (q - pi) descendant pattern

There is an analogous separation of terms at every order:

0+1
16, =\ _ Ny oer2 1 o1 | (Fly - L) — 4 -
Sk (Z,Z) = mf 26—285 AW f q - Pk
' Pk f _ 4
0—2 : . 1 Jo = Qo P
Ne 1 < (5—2> (=1 emoj pearjqe—1 | (P - L) N _
- - )= e - do = q(=0, 2)
(€ +3)(€ —2)! p2t 2; j )j+Ll+4 0 R
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