
Mina Himwich

Princeton Center for Theoretical Science

2312.08957 with Monica Pate

Amplitudes Conference

June 14, 2024

Symmetry in 4D Gravitational Scattering



Review: Soft Graviton Theorems as Symmetries

Soft graviton theorems are equivalently Ward identities for symmetries of the S-matrix

Interpret soft factor as generating infinitesimal symmetry transformation on hard states

1401.76026 He, Lysov, Mitra, Strominger

Leading soft graviton theorem

(Weinberg 1965)

These generalized symmetries also involve the insertion of soft gravitons

Infinitely many (supertranslation) symmetries (graviton momentumdirections)

with

Null momenta parametrized by a point on the celestial sphere/plane
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• Used basis of conformal primary operators that transform in highest-weight representations of global

conformal (Lorentz) transformations

Symmetries from Subleading Soft Theorems

Algebra of further subleading soft graviton modes extends (chiral) Poincare to

The graviton algebra and symmetry action on hardmassless particles were derived in celestial holography

1406.3312 Kapec, Lysov, Pasterski, Strominger

1509.01406 Campiglia, Laddha

1401.76026 He, Lysov, Mitra, Strominger

1509.01406 Campiglia, Laddha

2103.03961 Guevara, EH, Pate, Strominger

2105.14346 Strominger

Tree-level, minimal coupling

2

This talk: derivation of symmetry action frommomentum-space soft theorems

for massless and massive hard particles, guided by conformal covariance

Leading soft theorem supertranslation symmetry

Subleading soft theorem superrotation (Virasoro) symmetry

Extended BMS

symmetry

Poincare global

subgroup

2108.07763 EH, Pate, Singh
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sub- leading soft graviton is in a statewith definite conformal weight

Soft Graviton Expansion

Consider the low-energy expansion of an amplitude with an outgoing graviton:

Soft factors that generate the symmetry action on hard particles

should also transform covariantly with this weight

To isolate the term in the soft expansion, take the limit

3

1705.01027 Pasterski, Shao

Note definition of conformal primary basis

Converges for with
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Review of Lorentz Transformations

Lorentz transformations act as Mobius transformations on the celestial sphere

Parametrize scattering data to facilitate analysis of global conformal transformations

Polarization vectors require a reference point (equivalent to auxiliary spinor) to transform covariantly

Massless Particles

4

Momenta transform covariantly
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Massive Particles
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Subleading Soft Expansion

Consider the low-energy expansion of an amplitude with an outgoing graviton:

The leading and subleading terms take the familiar form

Beyond subleading order, soft expansionwas found to take the form

Weinberg 1965

1404.4091 Cachazo, Strominger

"Universal" term from gauge invariance, "non-universal" subleading in

1801.05528 Hamada, Shiu; 1802.03148 Li, Lin, Zhang
Tree-level, minimal coupling
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CovariantMassless Soft Factors

The soft factors do not transform as primaries

Natural proposal: complete them to angular momentumgenerators

Resulting modified soft factors transform covariantly with identical weight to soft gravitons:

1812.06895 Guevara, Ochirov, Vines

Note: divisionby implies this is not gauge invariant, and the dependence on the reference pointmeans the

"universal" partition is not strictly conformally invariant.

However, the gauge and conformal non-invariancewill drop out at the level of symmetry action.
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To construct symmetry action, consider a primary descendant of the modified massless soft factor:

It transforms with weight and does not depend on : fully covariant and invariantly partitioned

Action on Massless Particles

Define the right-weight of the primary descendant as

Consider the action of

Primaries of weight p have a finite set of modes closed under :

P = 3/2 -> l = -1 leading soft theorem, closed set of 2 modes: (chiral) translations

Examples:

subleadingsoft theorem, closed set of 3 modes: chiral half of Lorentz

Can prove that this action satisfies the algebra
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The prescription for massless particles (taking modes of a primary descendant of the soft factor)

can be generalized, provided that the relevant primary descendant is partitioned invariantly

However, for , its primary descendant depends on , so to find the correct symmetry action, we

need to revisit the soft factor itself

Soft factor \ can be split into two separately covariant pieces, one of which is independent of

For l = -1 , 0, the primary descendant is independent of and takes the simple form

CovariantMassive Soft Factors

Caution in massless limit
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Natural proposal for the "universal" soft factor for massiveexternal particles at order

As in the massless case, define , , and consider the action

Can again prove that this action respects the algebra:

Primary descendant generalizes the form already found for
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Summary

• Clarified origin of symmetry action from tower of momentum-space soft factors

• Proposed new "universal" massive soft factors motivated by covariance

• Discovered nontrivial symmetry action on massive particles

• Proved that symmetry action satisfies acting on massive particles

Future Directions

• How is the symmetry algebra deformed by loops and higher-dimension operators?

• What theories solve constraints?

• Organizationof "non-universal" terms in soft expansion from symmetry principles?

• Simplification ofsymmetry action in integer massive conformal primary basis?

• Kinematic algebra description of symmetry action on massive particles?
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More details



Action in the conformal primary basis follows directly:

Can prove by induction that this action satisfies the algebra

P = 3/2 -> l = -1 leading soft theorem, closed set of 2 modes: (chiral) translations

Base cases:

Examples:

Massless Action

subleadingsoft theorem, closed set of 3 modes: chiral half of Lorentz

Acting on scalars
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Leading: (chiral) translations

Subleading: Killing vectors on hyperboloid
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Splitting the Soft Factor

To separate the soft factor and isolate the covariant piece independent of , use completeness:

There is an analogous separation of terms at every order:

For example, when

Followsprimary

descendant pattern
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