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Overview
QCD amplitudes (without SUSY) are normally very very hard to
compute.

Exact formulae for amplitudes are available for k loops with n legs
at (k, n) in the range roughly

(0, n), (1, n), (2, n ≤ 7), (3, n = 4) . . .

Computed by Parke-Taylor, Bern-Dixon-Kosower, Mahlon, Badger,
Dunbar .... (See also talks by Tancredi, Abreu, Devoto, Xu).

I will explain a new method to compute very special
amplitudes/form factors in massless QCD with special matter
using chiral algebras.

In particular, this gives new formulae for n-point 2-loop all +
amplitudes at all n (consistent with the result from standard
techniques for n = 4).



Take away from this talk
1 A (small) subsector of QCD with special matter is exactly

solvable.
2 It has hidden algebraic structure which allows exact loop level

computations.
3 This comes from relation to twistor space.



Self-dual QCD
QCD can be written as a deformation of self-dual QCD:∫

tr(B ∧ F (A)−) +
∫
ψ/∂Aψ B ∈ Ω2

− ⊗ g

We can deform SDQCD by adding the term

g2
YM tr(B2)

Then it is equivalent to ordinary QCD in perturbation theory.
SDQCD has ++− vertex and −+ propagator

+

−

+

+ −

Adding tr(B2) introduces a vertex



One can study QCD in perturbation around the self-dual sector. In
N = 4 this is standard:

1 Form factors of tr(B2) are the MHV vertex.
2 Form factors of tr(B2)(x1) . . . tr(B2)(xn) closely related to the

“integrand”.

The goal is to apply a similar program to non-supersymmetric
gauge theory.

Without SUSY, form factors for tr(B2) give massless QCD
amplitudes up to l ≤ 2 loops, with 2− l states of negative helicity.



E.g. two loop form factors of tr(B2) in SDQCD match two-loop all
+ QCD amplitudes:

+

+

+

+

+



Form factors of an operator in SDQCD match those in massless
QCD in a certain range of loop number and helicities of external
states.

E.g.: form factors of tr(Bn) in SDQCD match form factors of
tr(F n

−) in massless QCD at l loops with n − l external states of
negative helicity.

+ +



Theorem (KC, Natalie Paquette)
When the matter representation R is such that

trR(X4) = trg(X4) for X ∈ g

then form factors of SDQCD are the same as correlators of a
certain 2d chiral algebra.

Chiral algebra means the structure of the holomorphic part of a 2d
CFT, with holomorphic OPEs satisfying associativty/crossing
symmetry.

Examples:
1 SU(2), Nf = 8.
2 SU(3), Nf = 9.
3 SU(N), matter in 8F ⊕ 8F∨ ⊕ ∧2F ⊕ ∧2F∨. Where ∧2F is the

antisymmetric part of F ⊗ F .
4 Any supersymmetric theory.



Anomaly cancellation
The trace identity

trR(X4) = trg(X4)

guarantees absence of an anomaly on twistor space coming from a
box diagram

On space-time this is an anomaly to integrability.

Twistor space anomaly cancels ⇐⇒ one loop all + amplitudes of
SDQCD vanish.



Relationship to celestial holography

We call the chiral algebra the celestial chiral algebra as it can be
viewed as living on the celestial sphere.

Chiral algebra for only + helicity states was previously studied by
Guevara, Himwich, Pate and Strominger.

Our approach differs from some approaches to celestial holography:

1 We only look at chiral algebras, not full CFTs.
2 We only study local CFTs.
3 Celestial chiral algebras exist in only very special situations

related to integrability.



Chiral algebra operators

The chiral algebra is described in spinor helicity notation: null
momenta pαα̇ are written in terms of a pair of spinors

pαα̇ = λαλ̃α̇

and we set
λα = (1, z) z ∈ CP1

The chiral algebra lives on the z-plane.

The chiral algebra has

Single particle states at z ←→ Single particle gauge theory states
with momentum λ = (1, z), λ̃ arbitrary.



For each λ̃, the chiral algebra has operators

J+a [λ̃](z), J−a [λ̃](z)

corresponding to gluons of positive/negative helicity. These can be
expanded in series

J+a [λ̃](z) =
∑ 1

n!m!
J+a [n,m](z)λ̃n

1̇λ̃
m
2̇

Similarly for matter fields and J−, giving

J−a [n,m](z) M+
i [n,m](z) M−

i [n,m](z)

A basis of operators in chiral algebra is given by normally ordered
products of derivatives of these states, e.g.

: J−a1 [n1,m1]∂zJ+a2 [n2,m2]∂
3
zM+

i [n3,m3] · · · : (z)



Chiral algebra dictionary

SDQCD states⇐⇒ chiral algebra operators

SDQCD form factors⇐⇒ chiral algebra correlators

SDQCD collinear singularities⇐⇒ chiral algebra OPEs



OPEs
OPEs are given by collinear singularities in SDQCD form factors.
At tree level:

J+[λ̃1](z1)J+[λ̃2](z2) ∼
1
〈12〉J

+[λ̃1 + λ̃2]

J−[λ̃1](z1)J+[λ̃2](z2) ∼
1
〈12〉J

−[λ̃1 + λ̃2]

〈12〉 = z1 − z2

1+

2+

∼ 1
〈12〉 1+

The J− − J− OPEs are non-singular.



Loop level OPEs

At loop level there are corrections coming from the one loop
splitting function:

J+[λ̃(1)](z1)J+[λ̃(2)](z2) ∼
[12]
〈12〉2

J−[λ̃(1)+λ̃(2)](z1)+ lower order poles

1+

2+

∼ [12]
〈12〉2 1−



And also subleading corrections from non-splitting contributions:

1+

2+

∼ [12]
〈12〉

∫∫
: 1+1− :

This gives

J+[λ̃1](z1)J+[λ̃2](z2) ∼
[12]

2 〈12〉

∫ 1

s,t=0
dsdt : J−[sλ̃1 + tλ̃2]J+[(1− s)λ̃1 + (1− t)λ̃2)] : (z1)

+ . . .



There are also higher loop contributions to the OPE:

J+J+ ∼: J−J−J− :

1+ 2+



Key question:

Do the OPEs dictated by collinear singularities of SDQCD form
factors lead to an associative (= crossing symmetric) chiral
algebra?

Theorem (KC, Natalie Paquette)
If the trace identity

trR(X4) = trg(X4)

holds then yes!
In particular all OPEs are rational functions with poles only in 〈ij〉.
Otherwise, associativity fails.

Proof uses twistor theory. Trace identity implies that there is no
anomaly on twistor space, so the theory lifts to a local holomorphic
QFT on twistor space. From this we can build a chiral algebra.

Associativity implies a lot of relations among collinear singularities!



Conformal blocks and computations

We would like to “bootstrap” form factors of SDQCD.

Operators in chiral algebra can be of negative 2d conformal
weight. For example J+[n,m] of conformal weight 1− 1

2(n + m).

In a chiral algebra with states of negative conformal weight,
correlation functions are ambiguous: with operators Oi of
conformal weight wi ,

〈O1(z1)O2(z2) . . .On(zn)〉

has pole of order −2wi at zi =∞, and poles at zi = zj from OPE.
The part regular at zi = zj is ambiguous.

Definition
A conformal block is a way of defining correlation functions in a
chiral algebra compatible with OPEs and conformal weights.



Theorem
1 Conformal blocks of the chiral algebra naturally in bijection

with local operators of SDQCD.
2 Correlation functions in the conformal block are the same as

form factors for the local operator.

Abstract proof goes by twistor theory.

This gives a bootstrap algorithm:

1 Choose a local operator in SDQCD, e.g. tr(B2).
2 Identify the corresponding conformal block (typically

determined by symmetries/dimensional analysis).
3 Compute correlation functions using the familiar 2d bootstrap.



Example: operator tr(B2) has conformal block determined by〈
tr(B2) | J−[λ̃1](z1)J−[λ̃2](z2)

〉
= 〈12〉2 .

We can use this to bootstrap amplitudes.

E.g. at tree level, trivial manipulations give Parke-Taylor:〈
tr(B2) | J+[λ̃1](z1) . . . J−[λ̃i ](zi) . . . J−[λ̃j ](zj) . . . J+[λ̃n](zn)

〉
=

〈ij〉4

〈12〉 . . . 〈n1〉 .

This is a bit boring! Much more interesting: one and two loop
form amplitudes.



The two loop all + form factor is the correlation function

A(2)(1+, . . . , n+) =
〈
tr(B2) | J+[λ̃1](z1) . . . J+[λ̃n](zn)

〉
We can compute this for gauge group SUN with matter
∧2F ⊕ ∧2F∨ ⊕ 8(F ⊕ F∨).

The one-loop and tree level OPEs are sufficient to compute this

J+[λ̃1](z1)J+[λ̃2](z2) ∼
1
〈12〉J

+[λ̃1 + λ̃2](z1) +
[12]
〈12〉2

J−[λ̃1 + λ̃2](z1)

+
[12]

2 〈12〉

∫ 1

s,t=0
dsdt : J−[sλ̃1 + tλ̃2]J+[(1− s)λ̃1 + (1− t)λ̃2)] : (z1) + . . .

OPEs reduce the computation inductively to the tree-level result.



The two loop four point trace ordered amplitude is:

A(2)(1+, 2+, 3+, 4+) =
(
6N − 4− 8N−1)( 1

(4π)4
[12][34]
〈12〉 〈34〉 +

1
(4π)4

[41][23]
〈41〉 〈23〉

)
−
(
4 + 8N−1) 1

(4π)4
[13][24]
〈13〉 〈24〉

− 2
(4π)4

[12][34](〈13〉 〈24〉+ 〈14〉 〈23〉)
〈12〉2 〈34〉2

+
2

(4π)4
[14][23](〈13〉 〈42〉+ 〈12〉 〈43〉)

〈14〉2 〈23〉2

Then the n-point single trace amplitude is

A(2)(1+, . . . , n+) =
∑

1≤i<j<k<l≤n
A(2)(i+, j+, k+, l+)〈ij〉 〈jk〉 〈kl〉 〈li〉

〈12〉 . . . 〈n1〉

The double-trace amplitude has been computed by Dixon-Morales,
and the triple-trace amplitude vanishes – so the result is available
in full colour.



Verifying two loop computations
Theorem (Dixon, Morales, 2406.xxxx)
The four-point two-loop amplitude computed using the chiral
algebra matches the amplitude computed using Feynman diagrams.

Subtleties:

1 Dim. reg. is not so good for computations starting with
SDQCD.

2 In dim. reg. there are IR divergences. The chiral algebra
formula computes the finite part.

3 With a mass regulator, there are no IR divergences and the
match is exact.

The computation is based on techniques from 0001001, 0201161,
0202271 by Bern, de Freitas, Dixon, Kosower, Wong.



Generalizations

In principle this method can be applied to compute certain form
factors at even higher loops. Difficulties:

1 Knowledge of OPEs beyond one loop is required. All order
formulae for OPEs were computed by

1 K. Zeng, by direct computation in the supersymmetric case.
2 N. Paquette and V. Fernandez, who show that all OPEs are

determined by tree-level and one loop OPEs by associativity.
2 Even knowing the OPEs, the bootstrap method is quite

complicated (but much simpler than Feynman diagrams).

We would also like to compute form factors of multi-point
insertions tr(B2)(x1) . . . tr(B2)(xn). This is currently out of reach
except when all xi are very close.



Including gravity

Bittleston-Sharma-Skinner and Bittleston perform a similar analysis
including SDGR. There are pure gravity, pure gauge, and mixed
anomalies. With matter in Rf scalars in Rs and gauge fields in g
anomalies cancel if

dimRs − 2 dimRf + dim g+ 2 = 0
trRs (X4)− 2 trRf (X

4) + 2 trg(X4) = 0
trRs (X2)− 2 trRf (X

2) + 2 trg(X2) = 0

Then there is a chiral algebra at loop level.

Problem
SDGR has no local operators, so no form factors – there are
conceptual difficulties with performing the analysis used for
SDQCD.



Chiral algebras as large N limits
Sometimes SDQCD is controlled by a chiral algebra. Is this the
large N limit of a 2d system?

Answer
Yes, on certain self-dual backgrounds.

Cleanest example: background is Burns space, conformally
equivalent to CP2\ a point.

We can put a theory on Burns space consisting of:

1 A gauge-fixed SDYM for so(8)
2 “Scalar flat gravity” (a 4d cousin of Liouville)

Conjecture (K.C., Paquette, Sharma)
Amplitudes for this theory on Burns space match large N
correlators of a specific (very simple) chiral algebra.



The chiral algebra is the BRST reduction of some free β − γ fields
by Sp(N).

This is derived from a quite standard holographic analysis on
twistor space and subject to numerous checks.

The duality implies that tree level amplitdues on CP2 \ {a point}
with n + and one − are given by planar Feynman diagrams in the
dual CFT:

+

+

−

=

+

−

+

Can verify explicitly for 2-point amplitudes.



Flavour symmetry backgrounds

There are similar dualities for SDQCD chiral algebras in certain
flavour symmetry background (R. Bittleston, K.C., K. Zeng).

Example
Sp(N) gauge theory, Nf = 16, background field for SU(16) flavour
symmetry given by

F11(A) = Nδx=0 N ∈ u(1) ⊂ su(16)

Amplitudes in this background are computed by correlators in an
explicit 2d chiral algebra. This leads to nice formulae for these
amplitudes.



With two fermions and one gluon the amplitude in presence of the
strong background photon we find:

−i
〈12〉 〈23〉

∑
a,b,c≥0

〈1λ〉a+b 〈2λ〉a+c 〈3λ〉b+c+2 [12]a[13]b [23]cN2a+2b+2c+1

a!(a + b)!(b + c)!c!(a + b + c + 1)!

Fermion 1 Fermion 3

Gluon 2

. . .

Photon source

We also have recursive formulae for 2 fermions and n gluon
amplitudes.



Summary

1 With special matter content, form factors of SDQCD are
computed by a chiral algebra.

2 This leads to many new computations of form factors at loop
level, and of amplitudes in self-dual backgrounds.

3 There are many more special amplitudes/form factors that
this approach can in principle compute.


