Minimal Kinematics

Bernd Sturmfels MPI Leipzig

Amplitudes 2024
IAS Princeton, June 12, 2024

Points on a Line

Moduli space of n distinct points on the Riemann sphere $\mathbb{C P}^{1}$:

$$
\mathcal{M}_{0, n}=\operatorname{Gr}(2, n)^{o} /\left(\mathbb{C}^{*}\right)^{n}
$$

Point configurations are represented by $2 \times n$ matrices:

$$
\left[\begin{array}{ccccccc}
1 & 1 & 1 & 1 & \cdots & 1 & 0 \\
0 & 1 & x_{1} & x_{2} & \cdots & x_{n-3} & 1
\end{array}\right]
$$

$\mathcal{M}_{0, n}$ is a very affine variety of dimension $n-3$. On the open Grassmannian $\operatorname{Gr}(2, n)^{\circ}$ all Plücker coordinates $p_{i j}$ are nonzero.
N. Early, A. Pfister, B.St: Minimal kinematics on $\mathcal{M}_{0, n}$, arXiv:2402.03065

Hyperplanes

$\mathcal{M}_{0, n}$ is the complement of the hyperplane arrangement $\left\{x_{i}=x_{j}\right\}$.

The surface $\mathcal{M}_{0,5}$ is the complement of six lines in $\mathbb{C P}^{2}$.
The real surface $\overline{\mathcal{M}}_{0,5}(\mathbb{R})$ consists of 12 pentagons.

Picture by Satyan Devadoss

The threefold $\mathcal{M}_{0,6}$ is the complement of ten planes in $\mathbb{C P}^{3}$.
The real threefold $\overline{\mathcal{M}}_{0,5}(\mathbb{R})$ consists of 60 associahedra.

Picture by David Eppstein

The 3-dim'l associahedron has 14 vertices, 21 edges and 9 facets.

Bernd studies Physics

Koba-Nielsen string integral

$$
\begin{aligned}
& \phi_{\epsilon}(s)=\epsilon^{n-3} \int_{\mathcal{M}_{0, n}^{+}} \frac{1}{p_{12} p_{23} p_{34} \cdots p_{n 1}} \prod_{1 \leq i<j \leq n} p_{i j}^{\epsilon \cdot s_{i j}} d p . \\
& \quad \text { Parke-Taylor integrand } \mathcal{I}
\end{aligned}
$$

The Mandelstam invariants $s_{i j}$ encode kinematic data.
They satisfy $s_{i j}=0, s_{i j}=s_{j i}$ and momentum conservation

$$
\sum_{j=1}^{n} s_{i j}=0 \quad \text { for all } i
$$

Bernd studies Physics

The leading singularity is a rational function of degree $3-n$:

$$
m_{n}=\lim _{\epsilon \rightarrow 0} \phi_{\epsilon}(s)
$$

This expression is the biadjoint scalar amplitude in ϕ^{3} theory:

$$
\begin{aligned}
m_{6}= & \frac{1}{s_{12} s_{34} s_{56}}+\frac{1}{s_{12} s_{56} s_{123}}+\frac{1}{s_{23} s_{56} s_{123}}+\frac{1}{s_{23} s_{56} s_{234}}+\frac{1}{s_{34} s_{56} s_{234}}+\frac{1}{s_{16} s_{23} s_{45}}+\frac{1}{s_{12} s_{34} s_{345}} \\
& +\frac{1}{s_{12} s_{45} s_{123}}+\frac{1}{s_{12} s_{45} s_{345}}+\frac{1}{s_{16} s_{23} s_{234}}+\frac{1}{s_{16} s_{34} s_{234}}+\frac{1}{s_{16} s_{34} s_{345}}+\frac{1}{s_{16} s_{45} s_{345}}+\frac{1}{s_{23} s_{45} s_{123}}
\end{aligned}
$$

Physics meets Statistics

The CHY scattering potential

$$
L(p)=\sum_{1 \leq i<j \leq n} s_{i j} \log \left(p_{i j}\right)
$$

is well defined on $\mathcal{M}_{0, n}$, by momentum conservation.
Given our gauge fixing, it suffices to sum over

$$
S=\{(i, j): 1 \leq i<j \leq n-1\} \backslash\{(1,2)\}
$$

In statistics, the $s_{i j}$ represent the data, and $L(p)$ is the log-likelihood function.

Proposition (Varchenko 1995)
For general $s_{i j} \in \mathbb{C}$, the log-likelihood function $L(p)$ has $(n-3)$! complex critical points \hat{p}. If the $s_{i j}$ are real then all \hat{p} are real.

St-Telen: Likelihood Equations and Scattering Amplitudes, Alg. Statistics 2021

Stringy Canonical Forms

Square the Parke-Taylor integrand, divide by the Hessian of the scattering potential, and sum over all $(n-3)$! critical points ...

Theorem (CHY formula)
The biadjoint scalar amplitude equals

$$
m_{n}=-\sum_{\hat{p}} \frac{\mathcal{I}^{2}}{\operatorname{Hess}(L)}(\hat{p})
$$

The number of summands is large: $(n-3)$!
Wouldn't be nicer to have only one critical point \hat{p} ?

Stringy Canonical Forms

Square the Parke-Taylor integrand, divide by the Hessian of the scattering potential, and sum over all $(n-3)$! critical points ...

Theorem (CHY formula)
The biadjoint scalar amplitude equals

$$
m_{n}=-\sum_{\hat{p}} \frac{\mathcal{I}^{2}}{\operatorname{Hess}(L)}(\hat{p})
$$

The number of summands is large: $(n-3)$!
Wouldn't be nicer to have only one critical point \hat{p} ?
This leads us to Minimal Kinematics
F. Cachazo and N. Early: Minimal kinematics: an all k and n peek into

Trop $_{+} G(k, n)$, SIGMA Symmetry Integrability Geom. Methods Appl. (2021).

ML degree one

Theorem (Early-Pfister-St 2024)
Choices of minimal kinematics on the moduli space $\mathcal{M}_{0, n}$ are in bijection with 2-trees with vertex set $[n-1]=\{1,2, \ldots, n-1\}$.

ML degree one

Theorem (Early-Pfister-St 2024)

Choices of minimal kinematics on the moduli space $\mathcal{M}_{0, n}$ are in bijection with 2-trees with vertex set $[n-1]=\{1,2, \ldots, n-1\}$.

Definition
For any subset T of $S=\{(i, j): 1 \leq i<j \leq n-1\} \backslash\{(1,2)\}$, set

$$
L_{T}=\sum_{(i, j) \in T} s_{i j} \cdot \log \left(p_{i j}\right)
$$

T exhibits minimal kinematics if L_{T} has exactly critical point, which is a rational function in s, and T is inclusion-maximal.

Definition
We define a class of graphs inductively. The edge 12 is a 2 -tree.
Any 2-tree on $[k]$ is obtained from a 2-tree on [$k-1$] by selecting an edge $i j$ and adding two new edges $i k$ and $j k$.

2-trees

$$
\left[\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & x_{1} & x_{2} & x_{3} & 1
\end{array}\right]
$$

Every 2 -tree T on $[n-1$] has $2 n-6$ edges in S.
The number of 2 -trees is $(2 n-5)$!!. Up to symmetry, the number is

$$
\begin{aligned}
& 1,1,2,5,12,39,136,529,2171,9368,41534, \ldots \\
& \text { for } n=4,5,6,7,8,9,10,11,12,13, \ldots
\end{aligned}
$$

(A054581)
For $n=6$, there are two 2-trees:
$T_{1}=\{13,23,14,34,15,45\} \quad$ and $\quad T_{2}=\{13,23,24,34,25,35\}$.
We visualize 2-trees as trees of $n-2$ triangles, with root 126 :

Towards Horn

The six coordinates of the critical point \hat{p} for the 2-tree T_{1} are
$\hat{p}_{13}=\quad \frac{s_{13}+s_{14}+s_{34}+s_{15}+s_{45}}{s_{13}+s_{23}+s_{14}+s_{34}+s_{15}+s_{45}}$
$\hat{p}_{23}=$
$-\frac{s_{23}}{s_{13}+s_{23}+s_{14}+s_{34}+s_{15}+s_{45}}$
$\hat{p}_{14}=\frac{\left(s_{13}+s_{14}+s_{34}+s_{15}+s_{45}\right)\left(s_{14}+s_{15}+s_{45}\right)}{\left(s_{13}+s_{23}+s_{14}+s_{34}+s_{15}+s_{45}\right)\left(s_{14}+s_{15}+s_{34}+s_{45}\right)}$
$\hat{p}_{34}=\frac{\left(s_{13}+s_{14}\right.}{\left(s_{13}+s_{23}+s_{14}+s_{34}+\right.}$
$\left.+s_{45}\right)\left(s_{14}+s_{15}+s_{45}\right)_{15}$
$\left.s_{15}\right)\left(s_{14}+s_{34}+s_{15}+s_{45}\right)\left(s_{15}+s_{45}\right)$
$\hat{p}_{15}=\frac{\left(s_{13}+s_{14}+s_{34}+s_{15}+s_{45}\right)\left(s_{14}+s_{15}+s_{45}\right) s_{15}}{\left(s_{13}+s_{23}+s_{14}+s_{34}+s_{15}+s_{45}\right)\left(s_{14}+s_{34}+s_{15}+s_{45}\right)\left(s_{15}+s_{45}\right)}$
$\hat{p}_{45}=-\frac{\left(s_{13}+s_{14}+s_{34}+s_{15}+s_{45}\right)\left(s_{14}+s_{15}+s_{45} s_{45}\right.}{\left(s_{13}+s_{23}+s_{14}+s_{34}+s_{15}+s_{45}\right)\left(s_{14}+s_{34}+s_{15}+s_{45}\right)\left(s_{15}+s_{45}\right)}$

The six coordinates of the critical point \hat{p} for the 2-tree T_{2} are

$$
\begin{array}{lllll}
\hat{p}_{13} & = & \frac{s_{13}}{s_{13}+s_{23}+s_{24}+s_{34}+s_{25}+s_{35}} & \hat{p}_{23} & =
\end{array} \quad-\frac{s_{23}+s_{24}+s_{25}+s_{34}+s_{35}}{s_{13}+s_{23}+s_{24}+s_{34}+s_{25}+s_{35}}
$$

Rational functions

For T_{1}, we set $s_{24}=s_{25}=s_{35}=0$

in the biadjoint scalar amplitude

$$
\begin{aligned}
m_{6}= & \frac{1}{s_{12} s_{34} s_{56}}+\frac{1}{s_{12} s_{56} s_{123}}+\frac{1}{s_{23} s_{56} s_{123}}+\frac{1}{s_{23} s_{56} s_{234}}+\frac{1}{s_{34} s_{56} s_{234}}+\frac{1}{s_{16} s_{23} s_{45}}+\frac{1}{s_{12} s_{34} s_{345}} \\
& +\frac{1}{s_{12} s_{45} s_{123}}+\frac{1}{s_{12} s_{45} s_{345}}+\frac{1}{s_{16} s_{23} s_{234}}+\frac{1}{s_{16} s_{34} s_{234}}+\frac{1}{s_{16} s_{34} s_{345}}+\frac{1}{s_{16} s_{45} s_{345}}+\frac{1}{s_{23} s_{45} s_{123}}
\end{aligned}
$$

The resulting specialized amplitude equals
$\frac{\left(s_{13}+s_{14}+s_{15}+s_{34}+s_{45}\right)\left(s_{14}+s_{15}+s_{45}\right) s_{15}}{s_{23}\left(s_{13}+s_{14}+s_{15}+s_{23}+s_{34}+s_{45}\right) s_{34}\left(s_{14}+s_{15}+s_{34}+s_{45}\right) s_{45}\left(s_{15}+s_{45}\right)}$.
Everything is a product of positive linear forms! Why?

Positive linear geometry

Theorem (Kapranov-Huh)
For a very affine variety $X \subset\left(\mathbb{C}^{*}\right)^{m}$, the following are equivalent:

- X has Euler characteristic ± 1.
- The log-likelihood function on X has a unique critical point \hat{p}.
- X admits a Horn uniformization

$$
\hat{p}=\lambda \star(H s)^{H} .
$$

Here, H is an integer matrix with m columns and λ is a vector in \mathbb{Z}^{m}. The Horn pair (H, λ) is an invariant of the variety X.
E. Duarte, O. Marigliano, B. Sturmfels: Discrete statistical models with rational maximum likelihood estimator, Bernoulli 27 (2021) 135-154.

For us, $m=2 n-6$ and s is the column vector of Mandelstam invariants.

Horn matrices

Example $3.2(n=6)$. We consider the two 2-trees that are shown in (10). In each case, the Horn matrix has nine rows and six columns. We find that the two Horn matrices are

$$
H_{T_{1}}=\left[\begin{array}{cccccc}
13 & 23 & 14 & 34 & 15 & 45 \\
1 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 0 & 0 \\
-1 & -1 & -1 & -1 & -1 & -1 \\
0 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & -1 & -1 & -1 & -1 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & -1 & -1
\end{array}\right] \quad \text { and } H_{T_{2}}=\left[\begin{array}{cccccc}
13 & 23 & 24 & 34 & 25 & 35 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 1 & 1 \\
-1 & -1 & -1 & -1 & -1 & -1 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & -1 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & -1 & -1
\end{array}\right] .
$$

For $H=H_{T_{i}}$, the column vector $H s$ has nine entries, each a linear form in six s-variables. Each column of H specifies an alternating product of these linear forms, and these are the entries of $(H s)^{H}$. By adjusting signs when needed, we obtain the six coordinates of \hat{p}.

Horn uniformization for 2-trees

Given an edge $i j$ in a 2 -tree T, write $\left[s_{i j}\right]$ for the sum of all Mandelstam invariants $s_{/ m}$ where $I m$ is a descendant of ij in T.

Corollary

The coordinates of the unique critical point \hat{p} are

$$
\hat{p}_{l m}= \pm \prod \frac{\left[s_{i k}\right]}{\left[s_{i k}\right]+\left[s_{j k}\right]}
$$

where the product runs over ancestral triangles ijk of the edge Im.

Here descendant refers to the transitive closure of parent-child in constructing T : New edges $i k$ and $j k$ are children of old edge $i j$. Call ijk an ancestral triangle of $I m$ if $I m$ is a descandant of $i k$.

Back to Amplitudes

Theorem
The amplitude m_{T} associated with a 2-tree T equals

$$
m_{T}=\prod_{i j k} \frac{\left[s_{i k}\right]+\left[s_{j k}\right]}{\left[s_{i k}\right] \cdot\left[s_{j k}\right]} .
$$

Product over all triangles in T. Rational function of degree $3-n$ We still need to define m_{T}.

Example

$$
m_{T_{2}}=\frac{\left(\left[s_{13}\right]+\left[s_{23}\right]\right)}{\left[s_{13}\right]\left[s_{23}\right]} \cdot \frac{\left(\left[s_{24}\right]+\left[s_{34}\right]\right)}{\left[s_{24}\right]\left[s_{34}\right]} \cdot \frac{\left(\left[s_{25}\right]+\left[s_{35}\right]\right)}{\left[s_{25}\right]\left[s_{35}\right]}
$$

Matrix of Circuits

Let M_{T} be the $(n-2) \times n$ matrix whose rows are $p_{j k} e_{i}-p_{i k} e_{j}+p_{i j} e_{k}$ for $i j k \in T$.
Example
$M_{T_{2}}=\left[\begin{array}{crcccc}p_{23} & -p_{13} & p_{12} & 0 & 0 & 0 \\ 0 & p_{34} & -p_{24} & p_{23} & 0 & 0 \\ 0 & p_{35} & -p_{25} & 0 & p_{23} & 0 \\ p_{26} & -p_{16} & 0 & 0 & 0 & p_{12}\end{array}\right]$

The rows of M_{T} span the kernel of our $2 \times n$ matrix The maximal minors of M_{T} are $\pm p_{i j} \cdot \Delta\left(M_{T}\right)$.

Lemma
For any 2-tree T, the gcd of the maximal minors of M_{T} equals

$$
\Delta\left(M_{T}\right)=\prod_{i j} p_{i j}^{v_{T}(i j)-1}
$$

where $v_{T}(i j)$ is the number of triangles containing ij. Degree $=n-3$.

Amplitude of a 2-tree

The integrand for a 2-tree T is

$$
\mathcal{I}_{T}=\frac{\Delta\left(M_{T}\right)^{2}}{\prod_{i j k \in T} p_{i j} p_{i k} p_{j k}}=\prod_{i j} p_{i j}^{v_{T}(i j)-2} .
$$

Rational function of degree $-n$ in Plücker coordinates.
The amplitude for T is defined as

$$
m_{T}=-\frac{\left(\mathcal{I}_{T}\right)^{2}}{\operatorname{Hess}\left(L_{T}\right)}(\hat{p})=\prod_{i j k} \frac{\left[s_{i k}\right]+\left[s_{j k}\right]}{\left[s_{i k}\right] \cdot\left[s_{j k}\right]}
$$

Corollary
If the 2-tree T is planar then m_{T} is the restriction of m_{n} to T.

Hypertrees

\ldots are collections triples $T=\left\{\Gamma_{1}, \ldots, \Gamma_{n-2}\right\}$ in [n] such that
(a) each $i \in[n]$ appears in at least two triples, and
(b) $\left|\bigcup_{i \in S} \Gamma_{i}\right| \geq|S|+2$ for all non-empty subsets $S \subseteq[n-2]$.

A-M. Castravet and J. Tevelev: Hypertrees, projections, and moduli of stable rational curves, Journal für die reine und angewandte Mathematik 675 (2013).

Hypertrees have the same number of triples as 2-trees, and M_{T}, \mathcal{I}_{T} and m_{T} are defined as before. But 2-trees are not hypertrees.

On-shell diagrams

Example (Irreducible hypertree)
$T=\{123,345,156,246\}$ has the matrix

$$
M_{T}=\left[\begin{array}{cccccc}
p_{23} & -p_{13} & p_{12} & 0 & 0 & 0 \\
0 & 0 & p_{45} & -p_{35} & p_{34} & 0 \\
p_{56} & 0 & 0 & 0 & -p_{16} & p_{15} \\
0 & p_{46} & 0 & -p_{26} & 0 & p_{24}
\end{array}\right]
$$

The hypertree divisor is an irreducible surface in $\mathcal{M}_{0,6}$, defined by

$$
\Delta\left(M_{T}\right)=p_{12} p_{35} p_{46}-p_{13} p_{26} p_{45}
$$

Hypertrees are on-shell diagrams in physics:
> S. Franco, D. Galloni, B. Penante and C. Wen: Non-planar on-shell diagrams, Journal of High Energy Physics 6 (2015)
> J.Tevelev: Scattering amplitudes of stable curves, Geometry \& Topology (2024)

Hypertree amplitude

Summing over the two critical points of L_{T} yields

$$
\begin{aligned}
m_{T} & =\frac{1}{s_{16} s_{24} s_{35}}+\frac{1}{s_{16} s_{23} s_{45}}+\frac{1}{s_{13} s_{26} s_{45}}+\frac{1}{s_{15} s_{23} s_{46}}+\frac{1}{s_{12} s_{35} s_{46}}+\frac{1}{s_{13} s_{24} s_{56}}+\frac{1}{s_{12} s_{34} s_{56}}+\frac{1}{s_{15} s_{26} s_{34}} \\
& +\frac{s_{15}+s_{45}}{s_{15} s_{23} s_{26} s_{45}}+\frac{s_{12}+s_{24}}{s_{12} s_{24} s_{35} s_{56}}+\frac{s_{12}+s_{15}}{s_{12} s_{15} s_{34} s_{46}}+\frac{s_{13}+s_{34}}{s_{13} s_{26} s_{34} s_{56}}+\frac{s_{13}+s_{16}}{s_{13} s_{16} s_{24} s_{45}}+\frac{s_{16}+s_{46}}{s_{16} s_{23} s_{35} s_{46}}
\end{aligned}
$$

Conclusion

Physics of scattering amplitudes inspires combinatorics of $\mathcal{M}_{0, n}$.

Minimal kinematics builds on Horn uniformization

