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Points on a Line

Moduli space of n distinct points on the Riemann sphere CP1:

M0,n = Gr(2, n)o/(C∗)n

Point configurations are represented by 2× n matrices:

[
1 1 1 1 · · · 1 0
0 1 x1 x2 · · · xn−3 1

]

“Gauge fixing”

M0,n is a very affine variety of dimension n − 3. On the open
Grassmannian Gr(2, n)o all Plücker coordinates pij are nonzero.

N. Early, A. Pfister, B.St: Minimal kinematics on M0,n, arXiv:2402.03065
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Hyperplanes

M0,n is the complement of the hyperplane arrangement {xi = xj}.

TESSELLATIONS OF MODULI SPACES AND THE MOSAIC OPERAD 13

Remark. Replacing bk with sbk for any dimension k creates a new manifold with

boundary. However, blowing up along bk defines a new manifold for all dimensions

except codim one. That is, for codim one, projectifying sbk into pbk annuls the

process of replacing bk with sbk.

Proposition 4.1.5. [8, §4.3] The iterated blow-up of P(V n) along the cells {bk}
in increasing order of dimension yields Mn

0 (R). It is inessential to specify the order

in which cells {bk} of the same dimension are blown up.

Therefore, the compactification of Mn
0 (R) is obtained by replacing the set {bk}

with {pbk}. The closure of Mn
0 (R) in P(V n) is obtained by replacing the set {bk}

with {sbk}; this procedure truncates each n − 3 simplex of P(V n) into the associa-

hedron Kn−1. We explore this method of truncation in §5.4.

Example 4.1.6. The blow-up of P(V 5) yielding M5
0(R) is shown in Figure 14.

The arrangement B5 on P(V 5) " RP2 yields six lines forming twelve 2-simplices;

the irreducible components of codim two turn out to be the points {b2
1, . . . , b

2
4} of

triple intersection. Blowing up along these components, we get S1 as a hexagon

for sb2
i and RP1 as a triangle for pb2

i . The associahedron K4 is a pentagon, and

the space M5
0(R) becomes tessellated by twelve such cells (shaded), an “evil twin”

of the dodecahedron. M5
0(R) appears as the connected sum of five real projective

planes.

Figure 14. P(V 5) → M5
0(R)

Historical Note. The diagram of M5
0(R) shown in Figure 14 is first found in a

different context by Brahana and Coble in 1926 [2, §1] relating to possibilities of

maps with twelve five-sided countries.

4.2. Another way of looking at the moduli space comes from observing the inclusion

S3 ⊂ PGl2(R). Since Mn
0 (R) is defined as n distinct points on RP1 quotiented by

PGl2(R), one can fix three of these points to be 0, 1, and ∞. From this perspective

The surface M0,5 is the complement of six lines in CP2.

The real surface M0,5(R) consists of 12 pentagons.
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Figure 9. (a) SV 2, (b) PV 2 , (c) PV 2
H , and (d) PV 2
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Figure 11. M5
0(R) before and after compactification.Figure 10. A local tiling of PV 2
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Figure 12. Iterated blowups of (a) RP3 to PV 3
# and (b) T 3 to M6

0(R) are both homeomorphic with a tiling by 60
associahedra.

The threefold M0,6 is the complement of ten planes in CP3.

The real threefold M0,5(R) consists of 60 associahedra.
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Picture by David Eppstein M0,6
25/01/17 05:44

Page 1 of 1http://www.ics.uci.edu/~eppstein/0xDE/fg6.png

The 3-dim’l associahedron has 14 vertices, 21 edges and 9 facets.
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Bernd studies Physics

Koba-Nielsen string integral

ϕϵ(s) = ϵn−3

∫

M+
0,n

1

p12p23p34 · · · pn1
∏

1≤i<j≤n

p
ϵ·sij
ij dp.

Parke-Taylor integrand I

The Mandelstam invariants sij encode kinematic data.

They satisfy sii = 0, sij = sji and momentum conservation

n∑

j=1

sij = 0 for all i .
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Bernd studies Physics
The leading singularity is a rational function of degree 3− n:

mn = lim
ϵ→0

ϕϵ(s)

This expression is the biadjoint scalar amplitude in ϕ3 theory:

m6 = 1
s12s34s56

+ 1
s12s56s123

+ 1
s23s56s123

+ 1
s23s56s234

+ 1
s34s56s234

+ 1
s16s23s45

+ 1
s12s34s345

+ 1
s12s45s123

+ 1
s12s45s345

+ 1
s16s23s234

+ 1
s16s34s234

+ 1
s16s34s345

+ 1
s16s45s345
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s23s45s123
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Physics meets Statistics

The CHY scattering potential

L(p) =
∑

1≤i<j≤n

sij log(pij).

is well defined on M0,n, by momentum conservation.

Given our gauge fixing, it suffices to sum over

S =
{
(i , j) : 1 ≤ i < j ≤ n − 1

}
\ {(1, 2)}.

In statistics, the sij represent the data,
and L(p) is the log-likelihood function.

Proposition (Varchenko 1995)

For general sij ∈ C, the log-likelihood function L(p) has (n − 3)!
complex critical points p̂. If the sij are real then all p̂ are real.

St-Telen: Likelihood Equations and Scattering Amplitudes, Alg. Statistics 2021
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Stringy Canonical Forms
Square the Parke-Taylor integrand, divide by the Hessian of the

scattering potential, and sum over all (n − 3)! critical points . . .

Theorem (CHY formula)

The biadjoint scalar amplitude equals

mn = −
∑

p̂

I2

Hess(L)
(p̂).

The number of summands is large: (n − 3)!

Wouldn’t be nicer to have only one critical point p̂ ?

This leads us to Minimal Kinematics

F. Cachazo and N. Early: Minimal kinematics: an all k and n peek into

Trop+G(k, n), SIGMA Symmetry Integrability Geom. Methods Appl. (2021).
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ML degree one

Theorem (Early-Pfister-St 2024)

Choices of minimal kinematics on the moduli space M0,n are in
bijection with 2-trees with vertex set [n − 1] = {1, 2, . . . , n − 1}.

Definition
For any subset T of S = {(i , j) : 1≤i<j≤n−1}\{(1, 2)}, set

LT =
∑

(i,j)∈T

sij · log(pij).

T exhibits minimal kinematics if LT has exactly critical point,
which is a rational function in s, and T is inclusion-maximal.

Definition
We define a class of graphs inductively. The edge 12 is a 2-tree.
Any 2-tree on [k] is obtained from a 2-tree on [k − 1]
by selecting an edge ij and adding two new edges ik and jk.
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2-trees

[
1 1 1 1 1 0
0 1 x1 x2 x3 1

]
Every 2-tree T on [n − 1] has 2n − 6 edges in S .
The number of 2-trees is (2n − 5)!!. Up to symmetry, the number is

1, 1, 2, 5, 12, 39, 136, 529, 2171, 9368, 41534, . . .
for n = 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, . . . .

(A054581)

For n = 6, there are two 2-trees:

T1 = {13, 23, 14, 34, 15, 45} and T2 = {13, 23, 24, 34, 25, 35}.
We visualize 2-trees as trees of n − 2 triangles, with root 126:
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Towards Horn
The six coordinates of the critical point p̂ for the 2-tree T1 are

p̂13 = s13+s14+s34+s15+s45
s13+s23+s14+s34+s15+s45

p̂23 = − s23
s13+s23+s14+s34+s15+s45

p̂14 = (s13+s14+s34+s15+s45)(s14+s15+s45)
(s13+s23+s14+s34+s15+s45)(s14+s15+s34+s45)

p̂34 = (s13+s14+s34+s15+s45)s34
(s13+s23+s14+s34+s15+s45)(s14+s34+s15+s45)

p̂15 = (s13+s14+s34+s15+s45)(s14+s15+s45)s15
(s13+s23+s14+s34+s15+s45)(s14+s34+s15+s45)(s15+s45)

p̂45 = − (s13+s14+s34+s15+s45)(s14+s15+s45)s45
(s13+s23+s14+s34+s15+s45)(s14+s34+s15+s45)(s15+s45)

The six coordinates of the critical point p̂ for the 2-tree T2 are

p̂13 = s13
s13+s23+s24+s34+s25+s35

p̂23 = − s23+s24+s25+s34+s35
s13+s23+s24+s34+s25+s35

p̂24 = − (s23+s24+s25+s34+s35)s24
(s13+s23+s24+s34+s25+s35)(s24+s34)

p̂34 = (s23+s24+s25+s34+s35)s34
(s13+s23+s24+s34+s25+s35)(s24+s34)

p̂25 = − (s23+s24+s25+s34+s35)s25
(s13+s23+s24+s34+s25+s35)(s25+s35)

p̂35 = (s23+s24+s25+s34+s35)s35
(s13+s23+s24+s34+s25+s35)(s25+s35)
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Rational functions

For T1, we set s24 = s25 = s35 = 0

in the biadjoint scalar amplitude

m6 = 1
s12s34s56

+ 1
s12s56s123

+ 1
s23s56s123

+ 1
s23s56s234

+ 1
s34s56s234

+ 1
s16s23s45

+ 1
s12s34s345

+ 1
s12s45s123

+ 1
s12s45s345

+ 1
s16s23s234

+ 1
s16s34s234

+ 1
s16s34s345

+ 1
s16s45s345

+ 1
s23s45s123

The resulting specialized amplitude equals

(s13 + s14 + s15 + s34 + s45) (s14 + s15 + s45) s15
s23 (s13+s14+s15+s23+s34+s45) s34 (s14+s15+s34+s45) s45 (s15+s45)

.

Everything is a product of positive linear forms! Why?
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Positive linear geometry

Theorem (Kapranov-Huh)

For a very affine variety X ⊂ (C∗)m, the following are equivalent:

▶ X has Euler characteristic ±1.

▶ The log-likelihood function on X has a unique critical point p̂.

▶ X admits a Horn uniformization

p̂ = λ ⋆ (Hs)H .

Here, H is an integer matrix with m columns and λ is a vector
in Zm. The Horn pair (H, λ) is an invariant of the variety X .

E. Duarte, O. Marigliano, B. Sturmfels: Discrete statistical models with
rational maximum likelihood estimator, Bernoulli 27 (2021) 135–154.

For us, m = 2n − 6 and s is the column vector of Mandelstam invariants.
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Horn matrices

Example 3.2 (n = 6). We consider the two 2-trees that are shown in (10). In each case,
the Horn matrix has nine rows and six columns. We find that the two Horn matrices are

HT1 =

2
6666666666664

13 23 14 34 15 45
1 0 1 1 1 1
0 1 0 0 0 0
�1 �1 �1 �1 �1 �1
0 0 1 0 1 1
0 0 0 1 0 0
0 0 �1 �1 �1 �1
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 �1 �1

3
7777777777775

and HT2 =

2
6666666666664

13 23 24 34 25 35
1 0 0 0 0 0
0 1 1 1 1 1
�1 �1 �1 �1 �1 �1
0 0 1 0 0 0
0 0 0 1 0 0
0 0 �1 �1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 �1 �1

3
7777777777775

.

For H = HTi
, the column vector Hs has nine entries, each a linear form in six s-variables.

Each column of H specifies an alternating product of these linear forms, and these are the
entries of (Hs)H . By adjusting signs when needed, we obtain the six coordinates of p̂.

For the second 2-tree T2, the six coordinates of the critical point p̂ are

p̂13 = s13

s13+s23+s24+s34+s25+s35
p̂23 = � s23+s24+s25+s34+s35

s13+s23+s24+s34+s25+s35

p̂24 = � (s23+s24+s25+s34+s35)s24

(s13+s23+s24+s34+s25+s35)(s24+s34)
p̂34 = (s23+s24+s25+s34+s35)s34

(s13+s23+s24+s34+s25+s35)(s24+s34)

p̂25 = � (s23+s24+s25+s34+s35)s25

(s13+s23+s24+s34+s25+s35)(s25+s35)
p̂35 = (s23+s24+s25+s34+s35)s35

(s13+s23+s24+s34+s25+s35)(s25+s35)

For the first 2-tree T1, the six coordinates of the critical point p̂ are

p̂13 = s13+s14+s34+s15+s45

s13+s23+s14+s34+s15+s45
p̂23 = � s23

s13+s23+s14+s34+s15+s45

p̂14 = (s13+s14+s34+s15+s45)(s14+s15+s45)
(s13+s23+s14+s34+s15+s45)(s14+s15+s34+s45)

p̂34 = � (s13+s14+s34+s15+s45)s34

(s13+s23+s14+s34+s15+s45)(s14+s34+s15+s45)

p̂15 = (s13+s14+s34+s15+s45)(s14+s15+s45)s15

(s13+s23+s14+s34+s15+s45)(s14+s34+s15+s45)(s15+s45)

p̂45 = � (s13+s14+s34+s15+s45)(s14+s15+s45)s45

(s13+s23+s14+s34+s15+s45)(s14+s34+s15+s45)(s15+s45)

We note that these p̂ij satisfy the trinomial equations given for XT1 resp. XT2 in Example 2.2.

Proof of Theorem 3.1. We start by reviewing the Horn uniformization (11) in the version
proved by Huh [17]. Let X ⇢ (C⇤)m be any very a�ne variety. The following are equivalent:

(i) The variety X has maximal likelihood (ML) degree 1;

(ii) There exists � = (�1, . . . ,�m) 2 (C⇤)m and a matrix H = (hij) in Z`⇥m with zero
column sums and left kernel A, such that the monomial map

(C⇤)` ! (C⇤)m, q = (q1, . . . , q`) 7!
�
�1

Ỳ

i=1

qhi1
i , . . . , �m

Ỳ

i=1

qhim
i

�

maps the A-discriminantal variety �A dominantly onto X.

7
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Horn uniformization for 2-trees

Given an edge ij in a 2-tree T , write [sij ] for the sum of all
Mandelstam invariants slm where lm is a descendant of ij in T .

Corollary

The coordinates of the unique critical point p̂ are

p̂lm = ±
∏ [sik ]

[sik ] + [sjk ]
,

where the product runs over ancestral triangles ijk of the edge lm.

Here descendant refers to the transitive closure of parent-child in
constructing T : New edges ik and jk are children of old edge ij .
Call ijk an ancestral triangle of lm if lm is a descandant of ik.

16 / 23



Back to Amplitudes

Theorem
The amplitude mT associated with a 2-tree T equals

mT =
∏

ijk

[sik ] + [sjk ]

[sik ] · [sjk ]
.

Product over all triangles in T . Rational function of degree 3− n

We still need to define mT .

Example

mT2 =
([s13] + [s23])

[s13] [s23]
· ([s24] + [s34])

[s24] [s34]
· ([s25] + [s35])

[s25] [s35]
.
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Matrix of Circuits

Let MT be the (n − 2)× n matrix whose
rows are pjkei − pikej + pijek for ijk ∈ T .

Example

MT2 =



p23 −p13 p12 0 0 0
0 p34 −p24 p23 0 0
0 p35 −p25 0 p23 0
p26 −p16 0 0 0 p12




The rows of MT span the kernel of our 2× n matrix

The maximal minors of MT are ± pij ·∆(MT ).

Lemma
For any 2-tree T , the gcd of the maximal minors of MT equals

∆(MT ) =
∏

ij

p
vT (ij)−1
ij ,

where vT (ij) is the number of triangles containing ij . Degree = n − 3.
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Amplitude of a 2-tree
The integrand for a 2-tree T is

IT =
∆(MT )

2

∏
ijk∈T pijpikpjk

=
∏

ij

p
vT (ij)−2
ij .

Rational function of degree −n in Plücker coordinates.

The amplitude for T is defined as

mT = − (IT )
2

Hess(LT )
(p̂) =

∏

ijk

[sik ] + [sjk ]

[sik ] · [sjk ]

Corollary

If the 2-tree T is planar then mT is the restriction of mn to T .
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Hypertrees

. . . are collections triples T = {Γ1, . . . , Γn−2} in [n] such that

(a) each i ∈ [n] appears in at least two triples, and

(b)
∣∣⋃

i∈S Γi
∣∣ ≥ |S |+ 2 for all non-empty subsets S ⊆ [n − 2].

A-M. Castravet and J. Tevelev: Hypertrees, projections, and moduli of stable

rational curves, Journal für die reine und angewandte Mathematik 675 (2013).

Hypertrees have the same number of triples as 2-trees, and MT ,
IT and mT are defined as before. But 2-trees are not hypertrees.
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On-shell diagrams

Example (Irreducible hypertree)

T = {123, 345, 156, 246} has the matrix

MT =




p23 −p13 p12 0 0 0

0 0 p45 −p35 p34 0
p56 0 0 0 −p16 p15
0 p46 0 −p26 0 p24




The hypertree divisor is an irreducible surface in M0,6, defined by

∆(MT ) = p12p35p46 − p13p26p45.

Hypertrees are on-shell diagrams in physics:

S. Franco, D. Galloni, B. Penante and C. Wen: Non-planar on-shell diagrams,
Journal of High Energy Physics 6 (2015)

J.Tevelev: Scattering amplitudes of stable curves, Geometry & Topology (2024)
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Hypertree amplitude
Summing over the two critical points of LT yields

mT = 1
s16s24s35

+ 1
s16s23s45

+ 1
s13s26s45

+ 1
s15s23s46

+ 1
s12s35s46

+ 1
s13s24s56

+ 1
s12s34s56

+ 1
s15s26s34

+ s15 + s45
s15s23s26s45

+ s12 + s24
s12s24s35s56

+ s12 + s15
s12s15s34s46

+ s13 +s34
s13s26s34s56

+ s13 + s16
s13s16s24s45

+ s16 + s46
s16s23s35s46

.
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Conclusion
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Physics of scattering amplitudes inspires combinatorics of M0,n.

Minimal kinematics builds on Horn uniformization
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